Skip to contents
-
combinations()
- Combinations of input arguments
-
constDiagMatrix()
- Constant plus diagonal matrix
-
convergence_rate()
- Empirical convergence rate of a KL divergence estimator
-
is_two_sample()
- Detect if a one- or two-sample problem is specified
-
kld_ci_bootstrap()
- Uncertainty of KL divergence estimate using Efron's bootstrap.
-
kld_ci_subsampling()
- Uncertainty of KL divergence estimate using Politis/Romano's subsampling bootstrap.
-
kld_discrete()
- Analytical KL divergence for two discrete distributions
-
kld_est()
- Kullback-Leibler divergence estimator for discrete, continuous or mixed data.
-
kld_est_brnn()
- Bias-reduced generalized k-nearest-neighbour KL divergence estimation
-
kld_est_discrete()
- Plug-in KL divergence estimator for samples from discrete distributions
-
kld_est_kde()
- Kernel density-based Kullback-Leibler divergence estimation in any dimension
-
kld_est_kde1()
- 1-D kernel density-based estimation of Kullback-Leibler divergence
-
kld_est_kde2()
- 2-D kernel density-based estimation of Kullback-Leibler divergence
-
kld_est_neural()
- Neural KL divergence estimation (Donsker-Varadhan representation) using
torch
-
kld_est_nn()
- k-nearest neighbour KL divergence estimator
-
kld_exponential()
- Analytical KL divergence for two univariate exponential distributions
-
kld_gaussian()
- Analytical KL divergence for two uni- or multivariate Gaussian distributions
-
kld_uniform()
- Analytical KL divergence for two uniform distributions
-
kld_uniform_gaussian()
- Analytical KL divergence between a uniform and a Gaussian distribution
-
mvdnorm()
- Probability density function of multivariate Gaussian distribution
-
to_uniform_scale()
- Transform samples to uniform scale
-
tr()
- Matrix trace operator
-
trapz()
- Trapezoidal integration in 1 or 2 dimensions