Algorithm benchmark in 1D
Source:vignettes/articles/algorithm-benchmark-1d.Rmd
algorithm-benchmark-1d.Rmd
In 1D, different KL divergence estimators are available, either based on kernel density estimation or on nearest-neighbour density estimation. Using different analytically tractable distributions and varying sample sizes, we evaluate different methods in terms of their accuracy and runtime in the two-sample problem.
Specification of benchmark scenario
Distributions and analytical KL divergence
We investigate the following pairs of distributions, for which analytical KL divergence values are known:
- vs. .
- vs. ,
- vs. ,
p <- list(
exponential = list(lambda1 = 1, lambda2 = 1/12),
gaussian = list(mu1 = 0, sigma1 = 1, mu2 = 1, sigma2 = 2^2),
uniform = list(a1 = 1, b1 = 2, a2 = 0, b2 = 4)
)
distributions <- list(
exponential = list(
samples = function(n, m) {
X <- rexp(n, rate = p$exponential$lambda1)
Y <- rexp(m, rate = p$exponential$lambda2)
list(X = X, Y = Y)
},
kld = do.call(kld_exponential, p$exponential)
),
gaussian = list(
samples = function(n, m) {
X <- rnorm(n, mean = p$gaussian$mu1, sd = sqrt(p$gaussian$sigma1))
Y <- rnorm(m, mean = p$gaussian$mu2, sd = sqrt(p$gaussian$sigma2))
list(X = X, Y = Y)
},
kld = do.call(kld_gaussian, p$gaussian)
),
uniform = list(
samples = function(n, m) {
X <- runif(n, min = p$uniform$a1, max = p$uniform$b1)
Y <- runif(m, min = p$uniform$a2, max = p$uniform$b2)
list(X = X, Y = Y)
},
kld = do.call(kld_uniform, p$uniform)
)
)
Analytical values for Kullback-Leibler divergences in test cases:
vapply(distributions, function(x) x$kld, 1)
#> exponential gaussian uniform
#> 1.5682400 0.4431472 1.3862944
Simulation scenarios
For each of the distributions specified above, samples of different sizes are drawn, with several replicates per distribution and sample size.
samplesize <- 10^(2:4)
nRep <- 25L
scenarios <- combinations(
distribution = names(distributions),
sample.size = samplesize,
replicate = 1:nRep
)
Algorithms
We consder the following algorithms:
- kernel density estimation with numerical integration
(
dens_int
) - kernel density estimation with a Monte Carlo approximation
(
dens_mc
) - 1-nearest neighbour density estimation (
nn_1
) - bias-reduced nearest neighbour density estimation
(
nn_br
)
algorithms <- list(
dens_int = function(X, Y) kld_est_kde1(X = X, Y = Y, MC = FALSE),
dens_mc = function(X, Y) kld_est_kde1(X = X, Y = Y, MC = TRUE),
nn_1 = kld_est_nn,
nn_br = function(X, Y) kld_est_brnn(X = X, Y = Y, warn.max.k = FALSE)
)
nAlgo <- length(algorithms)
Run the simulation study
# allocating results matrices
nscenario <- nrow(scenarios)
runtime <- kldiv1d <- matrix(nrow = nscenario,
ncol = nAlgo,
dimnames = list(NULL, names(algorithms)))
for (i in 1:nscenario) {
dist <- scenarios$distribution[i]
n <- scenarios$sample.size[i]
samples <- distributions[[dist]]$sample(n = n, m = n)
X <- samples$X
Y <- samples$Y
# different algorithms are evaluated on the same samples
for (j in 1:nAlgo) {
algo <- algorithms[[j]]
start_time <- Sys.time()
kldiv1d[i,j] <- algo(X, Y)
end_time <- Sys.time()
runtime[i,j] <- end_time - start_time
}
}
Post-processing: combine scenarios
, kldiv1d
and runtime
into a single data frame
tmp1 <- cbind(scenarios, kldiv1d) |> melt(measure.vars = names(algorithms),
value.name = "kld",
variable.name = "algorithm")
tmp2 <- cbind(scenarios, runtime) |> melt(measure.vars = names(algorithms),
value.name = "runtime",
variable.name = "algorithm")
results <- merge(tmp1,tmp2)
results$sample.size <- as.factor(results$sample.size)
rm(tmp1,tmp2)
Results
Accuracy of KL divergence estimators
ggplot(results, aes(x=sample.size, y=kld, color=algorithm)) +
geom_jitter(position=position_dodge(.5)) +
facet_wrap("distribution", scales = "free_y") +
geom_hline(data = data.frame(distribution = names(distributions),
kldtrue = vapply(distributions, function(x) x$kld,1)),
aes(yintercept = kldtrue)) +
xlab("Sample sizes") + ylab("KL divergence estimate") +
ggtitle("Accuracy of different algorithms") +
theme(plot.title = element_text(hjust = 0.5))
#> Warning: Removed 10 rows containing missing values or values outside the scale range
#> (`geom_point()`).
all estimators converge towards the true KL divergence (black solid line). Kernel density-based estimators generally have a lower variance than nearest neighbour-based estimators, but show some finite sample bias, especially in the asymmetric exponential distribution. There is no difference between the 1-nearest neighbour and bias-reduced k-nearest neighbour methods in terms of accuracy.
Runtime of KL divergence estimators
ggplot(results, aes(x=sample.size, y=runtime, color=algorithm)) +
scale_y_log10() +
geom_jitter(position=position_dodge(.5)) +
facet_wrap("distribution", scales = "free_y") +
xlab("Sample sizes") + ylab("Runtime [sec]") +
ggtitle("Runtime of different algorithms") +
theme(plot.title = element_text(hjust = 0.5))
Kernel density-based estimators, which use stats::density
,
are generally fastest (except for very small sample sizes). All
investigated methods scale approximately linearly with sample size,
which is due to the use of a fast Fourier transform in kernel density
estimation and use of the kd-tree in the nearest neighbours search. The
bias-reduced nearest neighbour estimator nn_br
is
approximately 1 order of magnitude slower than the 1-nearest neighbour
estimator nn_1
, without offering additional accuracy in the
1-D examples. The extra effort starts to pay off in higher-dimensional
problems.